Introduction to Nuclear Radiation

Presented By: The Palladino Company, Inc.

Version 03/30/22

Instructor

Carl Palladino Health Physicist 415-336-1556 carl@palladinocompany.com

Course Sponsor

Robert Wise Federal On-Scene Coordinator (562) 889-2572 wise.robert@epa.gov

Course Agenda

- Characteristics
- Measurement
- Action Levels
- Health Effects
- Protection Methods
- Radioactive Sources
- Instruments
- Incident Procedures
- Decontamination

Characteristics of Radiation

Radioactivity

 Materials that release nuclear ionizing radiation are Radioactive

- Three primary types of nuclear ionizing radiation
 - Alpha
 - Beta
 - Gamma

Alpha Radiation α

00

- 2 protons and 2 neutrons from the nucleus
- Travels 1 to 2 inches in air
- Stopped by paper or skin
- Large amount of energy released in short distance
- Not an external hazard (except for eyes)

- Serious internal hazard
- Common symbol is the Greek letter for A = α

Beta Radiation β

- Electrons from the nucleus $(n \rightarrow p^+ + e^-)$
- Travel up to 10 feet in air
- Stopped by a sheet of aluminum or plastic
- Travel up to 1/4 inch into animal tissue
- High external hazard
- Internal hazard
- Common symbol is the Greek letter for $B = \beta$

Gamma Radiation γ

- Electromagnetic energy released from the nucleus
- Travels 100s of feet in air
- Stopped by 3 feet of concrete or 1 foot of lead
- Greatest external hazard

Ouch!

30

-50 -30 -40 20 40- 30- 50- 40-

- Internal hazard
- Common symbol is the Greek letter for G = γ

Activity

- Curies (Ci) = radioactivity of material
 1 Ci = 37 billion disintegrations per second (dps)
- Becquerel (Bq) is international unit
 1 Bq = 1 dps
- 1 Ci = 37 billion Bq
- Example: 1 μCi Cs-137 check source = 37,000 dps

Half-Life (T_{1/2})

- Half-Life (T_{1/2}) = time for radioactivity to decrease in half
- 7 to 10 half-lives until material is near background
- Example: if half-life is 1 hour, then activity remaining after 10 hours is

0.1%

Half Lives = 10

Comparison Of Half-Lives

Radioactive Material	Half-Life	
U-238	4.5 billion years (depleted U)	
C-14	5,730 years (carbon dating)	
I-131	8 days (treat thyroid cancer)	
Tc-99m	6 hours (medical imaging)	
Pu-232	35 minutes (no uses)	
Sr-77	9 seconds (no uses)	
Po-212	0.298 microsec (no uses)	
Shorter half-life = higher activity		

Roentgen, rem, micro, milli, dose, dose rate... What's the difference?

Units of Measurement

Units

Unit	Symbol	Name	Number
Tera	Т	trillion	1,000,000,000,000
Giga	G	billion	1,000,000,000
Mega	М	million	1,000,000
kilo	k	thousand	1,000
	_	one	1
milli	m	thousandth	1/1,000
micro	μ	millionth	1/1,000,000
nano	n	billionth	1/1,000,000,000
pico	р	trillionth	1/1,000,000,000

Radioactive Point Source

Radioactive material emit radiation in all directions

Radiation Measurement

 Counts per minute (cpm) = radiation measured by a detector

• cpm ≠ activity (Ci or Bq)

cpm ≠ exposure (uR)

Roentgen (R)

- Roentgen (ran-'kin) primary health and safety detector
- Some instruments measure in
 milliroentgen per hour (mR/hr)
 microroentgen per hour (μR/hr)

Exposure rate is like a speedometer

Roentgen ≠ radiation <u>dose</u> to people

Roentgen Equivalent Man (rem)

- Rem = amount of damage to human tissue
 - ► 1 R ≈ 1 rem (gamma or beta only)
 - ► 1 R ≈ 20 rem (alpha internal exposure)

- 1 rem = 0.01 Sievert (Sv) International units
 - 100 rem = 1 Sv
 - 100 mrem = 1 mSv
- Rem is like an odometer
- Rem = total damage to people

Units Mnemonic

Measurement Illustrated

Exposure and Dose

Exposure = radiation interacting with your body

 Dose = damage to your tissue from exposure over time

Exposure Misconception

 You can <u>not</u> "become radioactive" or "glow" if exposed to radiation! (Sorry)

 You are contaminated if a radioactive material is on (external) or in (internal) your body

Internal Contamination

Action Levels

How much is too much?

H&S Action Levels

Dose = 5 rem/yr

Reference: Nuclear Regulatory Commission (NRC) 10 CFR 20.1201 for licensees and Federal OSHA 29 CFR 1910.1096(b)(1) for general workers

Dose rate = 2 mR/hr

Reference: Industry standard and NRC 10 CFR 20.1301(a)(2) for licensees

Contamination = 2 times background

Reference: Manual of Protective Action Guides and Protective Actions for Nuclear Incidents, EPA 400-R-92-001, May 1992

Emergency Dose Limits

- Emergency worker whole body dose limits (EPA-recommendation)
 - ► 5 rem = All activities
 - 10 rem = Protecting valuable property
 - 25 rem = Lifesaving or protection of large populations
 - >25 rem = Lifesaving or protection of large populations on voluntary basis only

Radiation Health Effects

Dude, check out my radiation tan!

Effects on Organisms

LD50/30* (rem) Organism 100,000s M. Radiodurans 10,000s Cockroach 2,300 Goldfish 1,500 Tortoise 1,000 Alligator 800 Rabbit 500 Cow 350 Dog Human (without medical treatment) 350 Human (with medical treatment) 500 Superman

*LD50/30 = Dose that kills 50% of the population within 30 days

Health Effects from Radiation Exposure

Somatic - Early or late physical effects

- Blood count reduced
- Hair loss
- Sterility
- Cancer
- Genetic Damage to genetic reproductive cells
- Teratogenic Damage to fetus
 - Reduced birth weight
 - Small head size
 - Leukemia

Somatic Effects

Delayed Somatic Effects

- Shortening of life span
- Cataracts (100 rems)

- Sterility (200 400 rems)
- Cancer (>10 rems)

Radiation Carcinogenesis

- Can occur at 10+ rem
- Documented at 100+ rem
- Tumor development is
 5 20 years
- Most frequent in the blood system, thyroid, bone, and skin

Cancer Statistics

Exposure	Chance of Dying from Cancer
Background	20%
1 rem	20.07%
10 rem	20.7%
100 rem	27%

Reference: National Cancer Institute and Biological Effects of Ionizing Radiation (BEIR V)

Genetic Effects

Radiation is a mutagen

 Damage to reproductive cells that pass to children

Has not been observed

Teratogenic Effects

- Embryo/fetus affected at over 20 rems
 - Reduced birth weight
 - Small head size
 - Childhood leukemia

Radiation Protection

Radiation Protection Methods

Decrease time

Decrease Exposure

Shielding

Increase shielding

Decrease exposure

- Concrete walls and lead shielding
- Personal Protective Equipment (alpha and beta only)
- Drums, plywood, vehicles, natural terrain (hills, trees, rocks) or any dense object

Water Wall

Personal Protective Equipment

- Typical PPE stops Alpha and some Beta
 - Tyvex suit and gloves for dermal protection from <u>contamination</u>
 - Respirator for inhalation protection (APR or SCBA)
 - Contaminated dust or smoke
 - Radioactive powders
- Street clothing or turnouts protective of Alpha and some Beta
- No PPE is fully protective of gamma or neutrons
- Dispose of contaminated PPE as rad waste if greater than 2 times background

Dosimeter: Canberra UltraRadiac

- Detector: gamma (neutrons optional)
- Built to military specs
- Dose Range: 0.1 µR to 999 R
- Dose Rate Range: 1 µR/hr to 500 R/hr

- Alarms adjustable (vibrating alarm option)
- Liquid Crystal Display with backlight
- Standard AAA Batteries
- \$630 with vibrator mode Canberra (800) 243-3955

- Legal occupational documentation for licensed facility
- Cumulative Dose to beta (high energy only), gamma, and X-rays
- Sensitivity 1 mrem to 1,000 rem
- Analyzed by laboratory

Dose Management

- As Low As Reasonably Achievable (ALARA)
 - Basis for radiation protection programs
 - Limit dose as much as possible
- Strategies for reducing dose
 - Limit amount of exposure time
 - Increase distance from source
 - Shield source materials
 - Rotate entry team with new team
 - Reduce number of entry team members
 - Use dosimeters
 - Start with lower dose limits and increase, if needed

Radioactive Sources

Will I know it by its glow?

Background Radiation

Source of Radiation	mrem/year
Natural Background Radon	200
Natural Background Other	100
Medical	50
Consumer Products	10
Nuclear Fuel Cycle and Occupational Exposure	1
Total	361

Industrial Sources

Field Instruments (nuclear density gauge)

<u>Industrial</u> (radiography camera)

1 MADE IN U.S.A 2

Radiography Source

Medical Radioactive Materials

Heart Stress Test: thallium-201

Commercial Radioactive Materials

 Smoke detectors (battery operated): americium-241

• Fiestaware: uranium-238

 Old glow-in-the dark watches, clocks, dials: radium-226

No salt: potassium-40

Commercial Radioactive Materials

Exit signs (non-electrical powered): tritium

 Photographic processes: uranium (uranium-238) nitrate

 Gas lantern mantles: thorium-228 and thorium-232

Discrete versus Dispersed Source

Discrete sources
 Intact sealed source
 Intact vial of liquid

Dispersed sources
 Contaminated soil
 Spilled liquid
 Smoke from burning radioactive material

Radiation Instruments

What on earth does THAT probe do?

Pancake Geiger-Mueller (GM) Detector

- Detects alpha, beta, gamma, X-ray
- Use for to locate contamination (esp. decon frisk)

Pros

Detects all types of radiation

Cons

- Can't discriminate between radiation types
- Low gamma detection efficiency

Calibrate in cpm NOT µR/hr

Nal Scintillation Detector

- Nal detects gamma and X-ray
 - Pros
 Highly efficient
 Durable
- Cons
 - Works only for gamma and X-rays

• Calibrate

- µR/hr for exposure rate or surveys
- cpm for surveys

Ion Chamber Detector

- Gas filled chamber
- Detects gamma, X-ray, high energy beta (with a beta window)
- Pros
 Accurate exposure rate

Cons

- Not sensitive to low energy radiation
- More delicate

Gamma Spectroscopy

Identify the radioisotope

Instruments can give wrong information!
 Operators should have significant experience.

Meter Components

- Analog or digital dial
- Fast/slow (response time)
- Light on/off
- Head phone input
- Audio on/off and divide
- Timer start and duration (scaler)
- Detector selector
- Battery check
- Reset
- Internal and/or external detector

Instrument Readings

- Understand the reading on your instruments
- Units
 - µR/hr = microroentgen per hour
 - mR/hr = milliroentgen per hour
 - ▶µR = microroentgen
 - mR = milliroentgen
 - cpm = counts per minute
 - c/m = counts per minute
 - kc/m = kilocounts per minutes or thousand counts per minute (1000 times the reading)

Incident Procedures

Tag, you' re it!

HAZWOPER Regulations

• 29CFR1910.120(h)(2) Initial entry

 Upon initial entry, representative air monitoring shall be conducted to identify any IDLH condition, exposure over permissible exposure limits or published exposure levels, <u>exposure</u> <u>over a radioactive material's dose limits</u> or other dangerous condition such as the presence of flammable atmospheres or oxygen-deficient environments.

Basic Entry Procedures

1. Record background for each instrument & zero dosimeter

2. Wear PPE with (sometimes) a respirator

3. Make work zones based on action levels

4. Find sources and contamination

Work Zones

Controls are same as any hazmat incident

Typical zone delineation:
Hot zone = 2 mR/hr
Decontamination reduction zone = twice background
Cold (support) zone = background

Decontamination

I've been slimed!

Decontamination Solutions

People
Soap and water
Wet wipe or towel
No aggressive scrubbing!

- Equipment
 - Soap and water
 Scrubbing Bubbles®
 Spray 'n Wash®
 Dilute nitric acid for metals

Frisk for Contamination

- Use pancake detector/probe (Geiger-Muller)
- Detector held 1/4" from person/object
- Move detector no faster than 1"/sec
- Takes 30 40 min to frisk a person 100%
- Focus on:
 - Hands
 - Feet
 - Face
 - ► Thighs
 - Butt

CDC Radiological Decon for Patients

"Radiation decontamination should not interfere with medical care of patients with life threatening injuries or illness."

"The right thing to do...[with a contaminated patient with a life threatening condition]...is to admit them to the Emergency department for immediate care."

<u>Reference</u>: Interim Guidelines for Hospital Response to Mass Casualties from a Radiological Incident, Centers for Disease Control and Prevention, Department of Health and Human Services, December 2003

Questions?